

 Navigation

 	
 index

 	
 next |

 	Python data validation library

Welcome to Cerberus-Sanhe

This is folk project of https://github.com/nicolaiarocci/cerberus, Sanhe add
support for bytes, date types, and add rules for maxsize, minsize,
before, after.

Cerberus is a lightweight and extensible data validation library for
Python.

CERBERUS, n. The watch-dog of Hades, whose duty it was to guard the
entrance; everybody, sooner or later, had to go there, and nobody wanted to
carry off the entrance.
- Ambrose Bierce, The Devil’s Dictionary

Cerberus provides type checking and other base functionality out of the box and
is designed to be easily extensible, allowing for easy custom validation. It
has no dependencies and is thoroughly tested under Python 2.6, Python 2.7,
Python 3.3, Python 3.4, PyPy and PyPy3.

At a Glance

You define a validation schema and pass it to an instance of the
Validator class:

>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)

Then you simply invoke the validate() to validate
a dictionary against the schema. If validation succeeds, True is returned:

>>> document = {'name': 'john doe'}
>>> v.validate(document)
True

Table of Contents

	Installing
	Stable Version

	Development Version

	Usage
	Basic Usage

	Validation Schema

	Validation Rules
	type

	required

	readonly

	nullable

	minlength, maxlength

	min, max

	minsize, maxsize

	before, after

	allowed

	empty

	items (dict)

	items (list)

	schema (dict)

	schema (list)

	valueschema

	propertyschema

	regex

	dependencies

	*of-rules
	anyof

	allof

	noneof

	oneof

	*of-rules typesaver

	excludes

	Allowing the Unknown

	Normalization Rules
	Renaming Of Fields

	Purging Unknown Fields

	Value Coercion

	Fetching Processed Documents
	validated Method

	normalized Method

	Schema Definition Formats

	Extending
	Custom Validators
	Class-based Custom Validators

	Custom Data Types

	Function-based Custom Validation

	Limitations

	Relevant Validator-properties
	Validator.__get_child_validator

	Validator.root_document

	Contributing
	Getting Started

	Making Changes

	Submitting Changes

	First time contributor?

	Dont’ know where to start?

	Running the Tests
	Testing with other Python versions

	Using Pytest

	Using Docker

	Continuous Integration

	Source Code

	API
	Validator Class

	Exceptions

	FAQ
	Can I use Cerberus to validate objectis?

	Changelog
	Version 0.10

	Version 0.9.1

	Version 0.9

	Version 0.8.1

	Version 0.8

	Version 0.7.2

	Version 0.7.1

	Version 0.7

	Version 0.6

	Version 0.5

	Version 0.4.0

	Version 0.3.0

	Version 0.2.0

	Version 0.1.0

	Version 0.0.3

	Version 0.0.2

	Version 0.0.1

	Authors
	Development Lead

	Patches and Suggestions

	Add feature

	Contact
	Blog

	Twitter

	Mailing List

	Bugs/ticket tracker

	GitHub

	License

Copyright Notice

Cerberus is an open source project by Nicola Iarocci [http://nicolaiarocci.com]. See the original LICENSE [https://github.com/nicolaiarocci/cerberus/blob/master/LICENSE] for more
information.

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

Cerberus Installation

This part of the documentation covers the installation of Cerberus. The first
step to using any software package is getting it properly installed.

Stable Version

Cerberus is on PyPI [https://pypi.python.org/pypi/Cerberus] so all you need
to do is:

pip install cerberus

Development Version

Cerberus is actively developed on GitHub, where the code is always available [https://github.com/nicolaiarocci/cerberus]. If you want to work with the
development version, there are two ways: you can either let pip pull
in the development version, or you can tell it to operate on a git checkout.
Either way, virtualenv is recommended.

Get the git checkout in a new virtualenv and run in development mode.

$ git clone http://github.com/nicolaiarocci/cerberus.git
Initialized empty Git repository in ~/dev/cerberus.git/
$ cd cerberus
$ virtualenv venv --distribute
New python executable in venv/bin/python
Installing distribute............done.
$. venv/bin/activate
$ python setup.py install
...
Finished processing dependencies for Cerberus

This will pull in the dependencies and activate the git head as the current
version inside the virtualenv. Then all you have to do is run git pull
origin to update to the latest version.

To just get the development version without git, do this instead:

$ mkdir cerberus
$ cd cerberus
$ virtualenv venv --distribute
$. venv/bin/activate
New python executable in venv/bin/python
Installing distribute............done.
$ pip install git+git://github.com/nicolaiarocci/cerberus.git
...
Cleaning up...

And you’re done!

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

Cerberus Usage

Basic Usage

You define a validation schema and pass it to an instance of the
Validator class:

>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)

Then you simply invoke the validate() to validate
a dictionary against the schema. If validation succeeds, True is returned:

>>> document = {'name': 'john doe'}
>>> v.validate(document)
True

Alternatively, you can pass both the dictionary and the schema to the
validate() method:

>>> v = Validator()
>>> v.validate(document, schema)
True

Which can be handy if your schema is changing through the life of the
instance.

Unlike other validation tools, Cerberus will not halt and raise an exception on
the first validation issue. The whole document will always be processed, and
False will be returned if validation failed. You can then access the
errors() method to obtain a list of issues.

>>> schema = {'name': {'type': 'string'}, 'age': {'type': 'integer', 'min': 10}}
>>> document = {'name': 'Little Joe', 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10'}

You will still get SchemaError and
DocumentError exceptions.

Changed in version 0.4.1: The Validator class is callable, allowing for the following shorthand
syntax:

>>> document = {'name': 'john doe'}
>>> v(document)
True

Validation Schema

A validation schema is a dictionary. Schema keys are the keys allowed in
the target dictionary. Schema values express the rules that must be matched by
the corresponding target values.

schema = {'name': {'type': 'string', 'maxlength': 10}}

In the example above we define a target dictionary with only one key, name,
which is expected to be a string not longer than 10 characters. Something like
{'name': 'john doe'} would validate, while something like {'name': 'a
very long string'} or {'name': 99} would not.

By definition all keys are optional unless the required rule is set for
a key.

Validation Rules

The following rules are currently supported:

type

	Data type allowed for the key value. Can be one of the following:

	
	string

	bytes

	integer

	float

	number (integer or float)

	boolean

	datetime

	date

	dict (formally collections.mapping)

	list (formally collections.sequence, excluding strings)

	set

A list of types can be used to allow different values:

>>> v.schema = {'quotes': {'type': ['string', 'list']}}
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': ['Do not disturb my circles!', 'Heureka!']})
True

>>> v.schema = {'quotes': {'type': ['string', 'list'], 'schema': {'type': 'string'}}}
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': [1, 'Heureka!']})
False
>>> v.errors
{'quotes': {0: 'must be of string type'}}

You can extend this list and support custom types, see Custom Data Types.

Note

Please note that type validation is performed before any other validation
rule which might exist on the same field (only exception being the
nullable rule). In the occurrence of a type failure subsequent
validation rules on the field will be skipped and validation will continue
on other fields. This allows to safely assume that field type is correct
when other (standard or custom) rules are invoked.

Changed in version 0.9: If a list of types is given, the key value must match any of them.

Changed in version 0.7.1: dict and list typechecking are now performed with the more generic
Mapping and Sequence types from the builtin collections module.
This means that instances of custom types designed to the same interface as
the builtin dict and list types can be validated with Cerberus. We
exclude strings when type checking for list/Sequence because it
in the validation situation it is almost certain the string was not the
intended data type for a sequence.

Changed in version 0.7: Added the set data type.

Changed in version 0.6: Added the number data type.

Changed in version 0.4.0: Type validation is always executed first, and blocks other field validation
rules on failure.

Changed in version 0.3.0: Added the float data type.

required

If True the key/value pair is mandatory. Validation will fail when it is
missing, unless validate() is called with
update=True:

>>> v.schema = {'name': {'required': True, 'type': 'string'}, 'age': {'type': 'integer'}}
>>> document = {'age': 10}
>>> v.validate(document)
False
>>> v.errors
{'name': 'required field'}

>>> v.validate(document, update=True)
True

Note

String fields with empty values will still be validated, even when
required is set to True. If you don’t want to accept empty values,
see the empty rule. Also, if dependencies are declared for the field, its
required rule will only be validated if all dependencies are
included with the document.

Changed in version 0.8: Check field dependencies.

readonly

If True the value is readonly. Validation will fail if this field is present
in the target dictionary.

nullable

If True the field value can be set to None. It is essentially the
functionality of the ignore_none_values parameter of the Validator Class,
but allowing for more fine grained control down to the field level.

>>> v.schema = {'a_nullable_integer': {'nullable': True, 'type': 'integer'}, 'an_integer': {'type': 'integer'}}

>>> v.validate({'a_nullable_integer': 3})
True
>>> v.validate({'a_nullable_integer': None})
True

>>> v.validate({'an_integer': 3})
True
>>> v.validate({'an_integer': None})
False
>>> v.errors
{'an_integer': 'null value not allowed'}

Changed in version 0.7: nullable is valid on fields lacking type definition.

New in version 0.3.0.

minlength, maxlength

Minimum and maximum length allowed for string and list types.

min, max

Minimum and maximum value allowed for integer, float and number
types.

minsize, maxsize

Minimum and maximum size in bytes allowed for bytes types.

before, after

Minimum and maximum bound allowed for datetime and date types.

Changed in version 0.7: Added support for float and number types.

allowed

Allowed values for string, list and int types. Validation will fail
if target values are not included in the allowed list.

>>> v.schema = {'role': {'type': 'list', 'allowed': ['agent', 'client', 'supplier']}}
>>> v.validate({'role': ['agent', 'supplier']})
True

>>> v.validate({'role': ['intern']})
False
>>> v.errors
{'role': "unallowed values ['intern']"}

>>> v.schema = {'role': {'type': 'string', 'allowed': ['agent', 'client', 'supplier']}}
>>> v.validate({'role': 'supplier'})
True

>>> v.validate({'role': 'intern'})
False
>>> v.errors
{'role': 'unallowed value intern'}

>>> v.schema = {'a_restricted_integer': {'type': 'integer', 'allowed': [-1, 0, 1]}}
>>> v.validate({'a_restricted_integer': -1})
True

>>> v.validate({'a_restricted_integer': 2})
False
>>> v.errors
{'a_restricted_integer': 'unallowed value 2'}

Changed in version 0.5.1: Added support for the int type.

empty

Only applies to string fields. If False validation will fail if the value
is empty. Defaults to True.

>>> schema = {'name': {'type': 'string', 'empty': False}}
>>> document = {'name': ''}
>>> v.validate(document, schema)
False

>>> v.errors
{'name': 'empty values not allowed'}

New in version 0.0.3.

items (dict)

Deprecated since version 0.0.3: Use schema (dict) instead.

When a dictionary, items defines the validation schema for items in
a list type:

>>> schema = {'rows': {'type': 'list', 'items': {'sku': {'type': 'string'}, 'price': {'type': 'integer'}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True

Note

The items (dict) rule is deprecated, and will be removed in a future release.

items (list)

When a list, items defines a list of values allowed in a list type of
fixed length in the given order:

>>> schema = {'list_of_values': {'type': 'list', 'items': [{'type': 'string'}, {'type': 'integer'}]}}
>>> document = {'list_of_values': ['hello', 100]}
>>> v.validate(document, schema)
True
>>> document = {'list_of_values': [100, 'hello']}
>>> v.validate(document, schema)
False

See schema (dict) rule below for dealing with arbitrary length list types.

schema (dict)

Validation rules for Mappings-fields.

>>> schema = {'a_dict': {'type': 'dict', 'schema': {'address': {'type': 'string'}, 'city': {'type': 'string', 'required': True}}}}
>>> document = {'a_dict': {'address': 'my address', 'city': 'my town'}}
>>> v.validate(document, schema)
True

Note

If all keys should share the same validation rules you probably want to use valueschema instead.

schema (list)

You can also use this rule to validate arbitrary length Sequence-items.

>>> schema = {'a_list': {'type': 'list', 'schema': {'type': 'integer'}}}
>>> document = {'a_list': [3, 4, 5]}
>>> v.validate(document, schema)
True

The schema rule on list types is also the prefered method for defining
and validating a list of dictionaries.

>>> schema = {'rows': {'type': 'list', 'schema': {'type': 'dict', 'schema': {'sku': {'type': 'string'}, 'price': {'type': 'integer'}}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True

Changed in version 0.0.3: Schema rule for list types of arbitrary length

valueschema

Validation schema for all values of a dict. The dict can have arbitrary
keys, the values for all of which must validate with given schema:

>>> schema = {'numbers': {'type': 'dict', 'valueschema': {'type': 'integer', 'min': 10}}}
>>> document = {'numbers': {'an integer': 10, 'another integer': 100}}
>>> v.validate(document, schema)
True

>>> document = {'numbers': {'an integer': 9}}
>>> v.validate(document, schema)
False

>>> v.errors
{'numbers': {'an integer': 'min value is 10'}}

New in version 0.7.

Changed in version 0.9: renamed keyschema to valueschema

propertyschema

This is the counterpart to valueschema that validates the keys of a dict. For historical reasons
it is not named keyschema.

>>> schema = {'a_dict': {'type': 'dict', 'propertyschema': {'type': 'string', 'regex': '[a-z]+'}}}
>>> document = {'a_dict': {'key': 'value'}}
>>> v.validate(document, schema)
True

>>> document = {'a_dict': {'KEY': 'value'}}
>>> v.validate(document, schema)
False

New in version 0.9.

regex

Validation will fail if field value does not match the provided regex rule. Only applies to string fiels.

>>> schema = {'email': {'type': 'string', 'regex': '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'}}
>>> document = {'email': 'john@example.com'}
>>> v.validate(document, schema)
True

>>> document = {'email': 'john_at_example_dot_com'}
>>> v.validate(document, schema)
False

>>> v.errors
{'email': "value does not match regex '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$'"}

For details on regex rules, see Regular Expressions Syntax [https://docs.python.org/2/library/re.html#regular-expression-syntax] on Python official site.

New in version 0.7.

dependencies

This rule allows for either a list or dict of dependencies. When a list is
provided, all listed fields must be present in order for the target field to be
validated.

>>> schema = {'field1': {'required': False}, 'field2': {'required': False, 'dependencies': ['field1']}}
>>> document = {'field1': 7}
>>> v.validate(document, schema)
True

>>> document = {'field2': 7}
>>> v.validate(document, schema)
False

>>> v.errors
{'field2': "field 'field1' is required"}

When a dictionary is provided, then not only all dependencies must be present,
but also any of their allowed values must be matched.

>>> schema = {'field1': {'required': False}, 'field2': {'required': True, 'dependencies': {'field1': ['one', 'two']}}}

>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True

>>> document = {'field1': 'three', 'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one', 'two']"}

>>> # same as using a dependencies list
>>> document = {'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one', 'two']"}

>>> # one can also pass a single dependency value
>>> schema = {'field1': {'required': False}, 'field2': {'dependencies': {'field1': 'one'}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True

>>> document = {'field1': 'two', 'field2': 7}
>>> v.validate(document, schema)
False

>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one']"}

Dependencies on sub-document fields are also supported:

>>> schema = {
... 'test_field': {'dependencies': ['a_dict.foo', 'a_dict.bar']},
... 'a_dict': {
... 'type': 'dict',
... 'schema': {
... 'foo': {'type': 'string'},
... 'bar': {'type': 'string'}
... }
... }
... }

>>> document = {'test_field': 'foobar', 'a_dict': {'foo': 'foo'}}
>>> v.validate(document, schema)
False

>>> v.errors
{'test_field': "field 'a_dict.bar' is required"}

Changed in version 0.8.1: Support for sub-document fields as dependencies.

Changed in version 0.8: Support for dependencies as a dictionary.

New in version 0.7.

*of-rules

These rules allow you to list multiple sets of rules to validate against. The field will be considered valid if it validates against the set in the list according to the prefixes logics all, any, one or none.

New in version 0.9.

anyof

Validates if any of the provided constraints validates the field.

allof

Validates if all of the provided constraints validates the field.

noneof

Validates if none of the provided constraints validates the field.

oneof

Validates if exactly one of the provided constraints applies.

For example, to verify that a property is a number between 0 and 10 or 100 and 110, you could do the following:

>>> schema = {'prop1':
... {'type': 'number',
... 'anyof':
... [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}}

>>> document = {'prop1': 5}
>>> v.validate(document, schema)
True

>>> document = {'prop1': 105}
>>> v.validate(document, schema)
True

>>> document = {'prop1': 55}
>>> v.validate(document, schema)
False
>>> v.errors
{'prop1': {'anyof': 'no definitions validated', 'definition 1': 'min value is 100', 'definition 0': 'max value is 10'}}

The anyof rule works by creating a new instance of a schema for each item in the list. The above schema is equivalent to creating two separate schemas:

>>> schema1 = {'prop1': {'type': 'number', 'min': 0, 'max': 10}}
>>> schema2 = {'prop1': {'type': 'number', 'min': 100, 'max': 110}}

>>> document = {'prop1': 5}
>>> v.validate(document, schema1) or v.validate(document, schema2)
True

>>> document = {'prop1': 105}
>>> v.validate(document, schema1) or v.validate(document, schema2)
True

>>> document = {'prop1': 55}
>>> v.validate(document, schema1) or v.validate(document, schema2)
False

*of-rules typesaver

You can concatenate any of-rule with an underscore and another rule with a list of rule-values to save typing:

{'foo': {'anyof_type': ['string', 'integer']}}
is equivalent to
{'foo': {'anyof': [{'type': 'string'}, {'type': 'integer'}]}}

Thus you can use this to validate a document against several schemas without implementing your own logic:

>>> schemas = [{'department': {'required': True, 'regex': '^IT$'}, 'phone': {'nullable': True}},
... {'department': {'required': True}, 'phone': {'required': True}}]
>>> emloyee_vldtr = Validator({'employee': {'oneof_schema': schemas, 'type': 'dict'}}, allow_unknown=True)
>>> invalid_employees_phones = []
>>> for employee in employees:
... if not employee_vldtr.validate(employee):
... invalid_employees_phones.append(employee)

excludes

You can declare fields to excludes others:

>>> v = Validator()
>>> schema = {'this_field': {'type': 'dict',
... 'excludes': 'that_field'},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field'}}
>>> v.validate({'this_field': {}, 'that_field': {}}, schema)
False
>>> v.validate({'this_field': {}}, schema)
True
>>> v.validate({'that_field': {}}, schema)
True
>>> v.validate({}, schema)
True

You can require both field to build an exclusive or:

>>> v = Validator()
>>> schema = {'this_field': {'type': 'dict',
... 'excludes': 'that_field',
... 'required': True},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field',
... 'required': True}}
>>> v.validate({'this_field': {}, 'that_field': {}}, schema)
False
>>> v.validate({'this_field': {}}, schema)
True
>>> v.validate({'that_field': {}}, schema)
True
>>> v.validate({}, schema)
False

You can also pass multiples fields to exclude in a list :

>>> schema = {'this_field': {'type': 'dict',
... 'excludes': ['that_field', 'bazo_field']},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field'},
... 'bazo_field': {'type': 'dict'}}
>>> v.validate({'this_field': {}, 'bazo_field': {}}, schema)
False

Allowing the Unknown

By default only keys defined in the schema are allowed:

>>> schema = {'name': {'type': 'string', 'maxlength': 10}}
>>> v.validate({'name': 'john', 'sex': 'M'}, schema)
False
>>> v.errors
{'sex': 'unknown field'}

However, you can allow unknown key/value pairs by either setting
allow_unknown to True:

>>> v.schema = {}
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True

Or you can set allow_unknown to a validation schema, in which case
unknown fields will be validated against it:

>>> v.schema = {}
>>> v.allow_unknown = {'type': 'string'}
>>> v.validate({'an_unknown_field': 'john'})
True
>>> v.validate({'an_unknown_field': 1})
False
>>> v.errors
{'an_unknown_field': 'must be of string type'}

allow_unknown can also be set at initialization:

>>> v.schema = {}
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True

allow_unknown can also be set as rule to configure a validator for a nested mapping that is checked against the schema-rule:

>>> v = Validator()
>>> v.allow_unknown
False

>>> schema = {
... 'name': {'type': 'string'},
... 'a_dict': {
... 'type': 'dict',
... 'allow_unknown': True, # this overrides the behaviour for
... 'schema': { # the validation of this definition
... 'address': {'type': 'string'}
... }
... }
... }

>>> v.validate({'name': 'john', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
True

>>> # this fails as allow_unknown is still False for the parent document.
>>> v.validate({'name': 'john', 'an_unknown_field': 'is not allowed', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
False

>>> v.errors
{'an_unknown_field': 'unknown field'}

Changed in version 0.9: allow_unknown can also be set for nested dict fields.

Changed in version 0.8: allow_unknown can also be set to a validation schema.

Normalization Rules

Renaming Of Fields

You can define a field to be renamed before any further processing.

>>> v = Validator({'foo': {'rename': 'bar'}})
>>> v.normalized({'foo': 0})
{'bar': 0}

To let a callable rename a field or arbitrary fields, you can define a handler
for renaming:

>>> v = Validator({}, allow_unknown={'rename_handler': int})
>>> v.normalized({'0': 'foo'})
{0: 'foo'}

Purging Unknown Fields

After renaming, unknown fields will be purged if the purge_unknown-property of
a Validator-instance is True.
You can set the property per keyword-argument upon initialization or as rule for
subdocuments like allow_unknown. The default is False.

>>> v = Validator({'foo': {'type': 'string'}}, purge_unknown=True)
>>> v.normalized({'bar': 'foo'})
{}

Value Coercion

Coercion allows you to apply a callable to a value before the document is validated.
The return value of the callable replaces the new value in the document. This can be
used to convert values or sanitize data before it is validated.

>>> v.schema = {'amount': {'type': 'integer'}}
>>> v.validate({'amount': '1'})
False

>>> v.schema = {'amount': {'type': 'integer', 'coerce': int}}
>>> v.validate({'amount': '1'})
True
>>> v.document
{'amount': 1}

>>> to_bool = lambda v: v.lower() in ['true', '1']
>>> v.schema = {'flag': {'type': 'boolean', 'coerce': to_bool}}
>>> v.validate({'flag': 'true'})
True
>>> v.document
{'flag': True}

New in version 0.9.

Fetching Processed Documents

Beside the document-property a Validator-instance has shorthand methods to
process a document and fetch its processed result.

validated Method

There’s a wrapper-method validated that returns the validated document. If the
document didn’t validate None is returned. It can be useful for flows like this:

v = Validator(schema)
valid_documents = [x for x in [v.validated(y) for y in documents] if x is not None]

If a coercion callable raises a TypeError or ValueError then the
exception will be caught and the validation with fail. All other exception
pass through.

New in version 0.9.

normalized Method

Similary, the normalized-method returns a normalized copy of a document without validating it:

>>> schema = {'amount': {'coerce': int}}
>>> document = {'model': 'consumerism', 'amount': '1'}
>>> normalized_document = v.normalized(document, schema)
>>> type(normalized_document['amount'])
<type 'int'>

New in version 0.10.

Schema Definition Formats

Cerberus schemas are built with vanilla Python types: dict, list, string, etc. Even user-defined
validation rules are invoked in the schema by name, as a string. A useful side effect of this design is
that schemas can be defined in a number of ways, for example with PyYAML [http://pyyaml.org].

>>> import yaml
>>> schema_text = '''
... name:
... type: string
... age:
... type: integer
... min: 10
... '''
>>> schema = yaml.load(schema_text)
>>> document = {'name': 'Little Joe', 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10'}

You don’t have to use YAML of course, you can use your favorate serializer. JSON for example. As long as
there is a decoder thant can produce a nested dict, you can use it to define a schema.

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

Extending Cerberus

Custom Validators

Cerberus supports custom validation in two styles:

	Class-based Custom Validators

	Function-based Custom Validation

As a general rule, when you are customizing validators in your application,
Class-based style is more suitable for common validators, which are
also more human-readable (since the rule name is defined by yourself), while
Function-based style is more suitable for special and one-off ones.

Class-based Custom Validators

Suppose that in our use case some values can only be expressed as odd integers,
therefore we decide to add support for a new isodd rule to our validation
schema:

schema = {'oddity': {'isodd': True, 'type': 'integer'}}

This is how we would go to implement that:

from cerberus import Validator

class MyValidator(Validator):
 def _validate_isodd(self, isodd, field, value):
 if isodd and not bool(value & 1):
 self._error(field, "Must be an odd number")

By subclassing Cerberus Validator class and adding the custom
validate<rulename> function, we just enhanced Cerberus to suit our needs.
The custom rule isodd is now available in our schema and, what really
matters, we can use it to validate all odd values:

>>> v = MyValidator(schema)
>>> v.validate({'oddity': 10})
False
>>> v.errors
{'oddity': 'Must be an odd number'}
>>> v.validate({'oddity': 9})
True

In a schema schema you can use space characters instead of underscores, e.g.
{'oddity': {'is odd': 42'}} is an alias for {'oddity': {'is_odd': 42'}}.

New in version 0.7.1: Custom validators also have access to a special self.document variable
that allows validation of a field to happen in context of the rest of the
document.

To make use of additional contextual information in a sub-class of Validator,
use a pattern like this:

class MyValidator(Validator):
 def __init__(self, *args, **kwargs):
 if 'additional_context' in kwargs:
 self.additional_context = kwargs['additional_context']
 super(MyValidator, self).__init__(*args, **kwargs)

 def _validate_type_foo(self, field, value):
 make_use_of(self.additional_context)

New in version 0.9.

Custom Data Types

Cerberus supports and validates several standard data types (see type).
When building Class-based Custom Validators you can add and validate your own data types.
For example Eve [http://python-eve.org] (a tool for quickly building and
deploying RESTful Web Services) supports a custom objectid type, which is
used to validate that field values conform to the BSON/MongoDB ObjectId
format.

You extend the supported set of data types by adding
a _validate_type_<typename> method to your own Validator
subclass. This snippet, directly from Eve source, shows how the objectid
has been implemented:

def _validate_type_objectid(self, field, value):
 """ Enables validation for `objectid` schema attribute.

 :param field: field name.
 :param value: field value.
 """
 if not re.match('[a-f0-9]{24}', value):
 self._error(field, ERROR_BAD_TYPE.format('ObjectId'))

New in version 0.0.2.

Function-based Custom Validation

With a special rule validator, you can customize validators by defining
your own functions with the following prototype:

def validate_<fieldname>(field, value, error):
 pass

As a contrast, if the odd value is a special case, you may want to make the
above rule isodd into Function-based style, which is a more lightweight
alternative:

def validate_oddity(field, value, error):
 if not bool(value & 1):
 error(field, "Must be an odd number")

Then, you can validate an odd value like this:

>>> schema = {'oddity': {'validator': validate_oddity}}
>>> v = Validator(schema)
>>> v.validate({'oddity': 10})
False
>>> v.errors
{'oddity': 'Must be an odd number'}

>>> v.validate({'oddity': 9})
True

New in version 0.8.

Limitations

You must not call your custom rule validator and it may be a bad idea to
overwrite particular contributed rules.

Relevant Validator-properties

Validator.__get_child_validator

If you need another instance of your Validator-subclass, the
__get_child_validator-method returns another instance that is initiated
with the same arguments as self was. You can specify overriding keyword-
arguments.

New in version 0.9.

Validator.root_document

A child-validator - as used when validating a schema - can access the first
generation validator’s document that is being processed via its
root_document-property.
It’s untested what happens when you change that. It may make boom.

New in version 0.10.

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

How to Contribute

Contributions are welcome! Not familiar with the codebase yet? No problem!
There are many ways to contribute to open source projects: reporting bugs,
helping with the documentation, spreading the word and of course, adding
new features and patches.

Getting Started

	Make sure you have a GitHub account.

	Open a new issue [https://github.com/nicolaiarocci/cerberus/issues/new], assuming one does not already exist.

	Clearly describe the issue including steps to reproduce when it is a bug.

Making Changes

	Fork [https://help.github.com/articles/fork-a-repo] the repository on GitHub.

	Create a topic branch from where you want to base your work.

	This is usually the master branch.

	Please avoid working directly on master branch.

	Make commits of logical units (if needed rebase your feature branch before
submitting it).

	Check for unnecessary whitespace with git diff --check before committing.

	Make sure your commit messages are in the proper format [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	If your commit fixes an open issue, reference it in the commit message (#15).

	Make sure your code comforms to PEP8 [https://www.python.org/dev/peps/pep-0008/].

	Make sure you have added the necessary tests for your changes.

	Run all the tests to assure nothing else was accidentally broken.

	Don’t forget to add yourself to AUTHORS [https://github.com/nicolaiarocci/cerberus/blob/master/AUTHORS].

These guidelines also apply when helping with documentation (actually, for
typos and minor additions you might choose to fork and edit [https://github.com/blog/844-forking-with-the-edit-button]).

Submitting Changes

	Push your changes to a topic branch in your fork of the repository.

	Submit a Pull Request [https://help.github.com/articles/creating-a-pull-request].

	Wait for maintainer feedback.

First time contributor?

It’s alright. We’ve all been there.

Dont’ know where to start?

There are usually several TODO comments scattered around the codebase, maybe
check them out and see if you have ideas, or can help with them. Also, check
the open issues [https://github.com/nicolaiarocci/cerberus/issues] in case there’s something that sparks your interest. What
about documentation? I suck at english so if you’re fluent with it (or notice
any error), why not help with that? In any case, other than GitHub help [https://help.github.com/] pages,
you might want to check this excellent Effective Guide to Pull Requests [http://codeinthehole.com/writing/pull-requests-and-other-good-practices-for-teams-using-github/]

Running the Tests

Cerberus runs under Python 2.6, 2.7, Python 3.3, Python 3.4 and PyPy. Therefore tests
will be run in those four platforms in our continuous integration server [https://travis-ci.org/nicolaiarocci/cerberus/].

The easiest way to get started is to run the tests in your local environment
with:

$ python setup.py test

Testing with other Python versions

Before you submit a pull request, make sure your tests and changes run in
all supported python versions: 2.6, 2.7, 3.3, 3.4 and PyPy. Instead of creating all
those environments by hand, Cerberus uses tox [http://tox.readthedocs.org].

Make sure you have all required python versions installed and run:

$ pip install tox # First time only
$ tox

This might take some time the first run as the different virtual environments
are created and dependencies are installed. If everything is ok, you will see
the following:

_________ summary _________
py26: commands succeeded
py27: commands succeeded
py33: commands succeeded
py34: commands succeeded
pypy: commands succeeded
flake8: commands succeeded
congratulations :)

If something goes wrong and one test fails, you might need to run that test
in the specific python version. You can use the created environments to run
some specific tests. For example, if a test suite fails in Python 3.4:

From the project folder
$ tox -e py34

Have a look at /tox.ini for the available test environments and their workings.

Using Pytest

You also choose to run the whole test suite using pytest [http://pytest.org]:

Run the whole test suite
$ py.test

Using Docker

If you have a running Docker [https://www.docker.com]-daemon running you can run tests from a container
that has the necessary interpreters and packages installed and pass arguments
to tox:

from the project's root directory
$./run-docker-tests -e pypy3 -e doctest

You can run the script without any arguments to test the project exactly as
Continuous Integration does without having to setup anything.
If there’s a directoy .tox in the project-folder it will be used to store
and access cached virtual environments and test-logs.

Continuous Integration

Each time code is pushed to the master branch the whole test-suite is
executed on Travis-CI [https://travis-ci.org].
This is also the case for pull-requests. A box at the bottom of its
conversation-view will inform about the tests’ status.
The contributor can then fix the code, add commits, squash [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html] the commits and
push again.
The CI will also run flake8 [https://flake8.readthedocs.org] so make sure that your code complies to PEP8 and
test links and sample-code in the documentation.

Source Code

Source code is available at GitHub [https://github.com/nicolaiarocci/cerberus].

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

API Documentation

Validator Class

	
class cerberus.Validator(*args, **kwargs)

	Validator class. Validates any Python dict against a validation schema,

which is provided as an argument at class instantiation, or upon calling
the validate() method.

	Parameters:	
	schema – optional validation schema.

	transparent_schema_rules – if True unknown schema rules will be
ignored (no SchemaError will be raised).
Defaults to False. Useful you need to
extend the schema grammar beyond Cerberus’
domain.

	ignore_none_values – If True it will ignore None values for type
checking. (no UnknownType error will be added).
Defaults to False. Useful if your document
is composed from function kwargs with defaults.

	allow_unknown – if True unknown key/value pairs (not present in
the schema) will be ignored, and validation will
pass. Defaults to False, returning an ‘unknown
field error’ un validation.

Changed in version 0.9.1: ‘required’ will always be validated, regardless of any dependencies.

New in version 0.9: ‘anyof’, ‘noneof’, ‘allof’, ‘anyof’ validation rules.
PyPy support.
‘coerce’ rule.
‘propertyschema’ validation rule.
‘validator.validated’ takes a document as argument and returns a
Validated document or ‘None’ if validation failed.

Changed in version 0.9: Use ‘str.format’ in error messages so if someone wants to override them
 does not get an excpetion if arguments are not passed.
‘keyschema’ is renamed to ‘valueschema’. Closes #92.
‘type’ can be a list of valid types.
Usages of ‘document’ to ‘self.document’ in ‘_validate’.
When ‘items’ is applied to a list, field name is used as key for
 ‘validator.errors’, and offending field indexes are used as keys for
Field errors ({‘a_list_of_strings’: {1: ‘not a string’}})
Additional kwargs that are passed to the __init__-method of an
Instance of Validator-(sub-)class are passed to child-validators.
Ensure that additional **kwargs of a subclass persist through validation
Improve failure message when testing against multiple types.
Ignore ‘keyschema’ when not a mapping.
Ignore ‘schema’ when not a sequence.
‘allow_unknown’ can also be set for nested dicts. Closes #75.
Raise SchemaError when an unallowed ‘type’ is used in conjunction with
 ‘schema’ rule.

Changed in version 0.8.1: ‘dependencies’ for sub-document fields. Closes #64.
‘readonly’ should be validated before any other validation. Closes #63.
‘allow_unknown’ does not apply to sub-dictionaries in a list.
Closes #67.
update mode does not ignore required fields in subdocuments. Closes #72.
‘allow_unknown’ does not respect custom rules. Closes #66.

New in version 0.8: ‘dependencies’ also support a dict of dependencies.
‘allow_unknown’ can be a schema used to validate unknown fields.
Support for function-based validation mode.

Changed in version 0.7.2: Successfully validate int as a float type.

Changed in version 0.7.1: Validator options like ‘allow_unknown’ and ‘ignore_none_values’ are now
taken into consideration when validating sub-dictionaries.
Make self.document always the root level document.
Up-front validation for schemas.

New in version 0.7: ‘keyschema’ validation rule.
‘regex’ validation rule.
‘dependencies’ validation rule.
‘mix’, ‘max’ now apply on floats and numbers too. Closes #30.
‘set’ data type.

New in version 0.6: ‘number’ (integer or float) validator.

Changed in version 0.5.0: validator.errors returns a dict where keys are document fields and
values are validation errors.

Changed in version 0.4.0: validate_update() is deprecated. Use validate() with
update=True instead.
Type validation is always performed first (only exception being
nullable). On failure, it blocks other rules on the same field.
Closes #18.

New in version 0.2.0: self.errors returns an empty list when validate() has not been called.
Option so allow nullable field values.
Option to allow unknown key/value pairs.

New in version 0.1.0: Option to ignore None values for type checking.

New in version 0.0.3: Support for transparent schema rules.
Added new ‘empty’ rule for string fields.

New in version 0.0.2: Support for addition and validation of custom data types.

	
current

	Get the current document being validated.

When validating, the current (sub)document will be available
via this property.

	
errors

	

	Return type:	a list of validation errors. Will be empty if no errors
were found during. Resets after each call to validate().

	
validate(document, schema=None, update=False, context=None)

	Validates a Python dictionary against a validation schema.

	Parameters:	
	document – the dict to validate.

	schema – the validation schema. Defaults to None. If not
provided here, the schema must have been provided at
class instantiation.

	update – If True validation of required fields won’t be
performed.

	context – the document in which context validation should be
performed. Defaults to None.

	Returns:	True if validation succeeds, False otherwise. Check the
errors() property for a list of validation errors.

Changed in version 0.4.0: Support for update mode.

	
validate_schema(schema)

	Validates a schema against supported rules.

	Parameters:	schema – the schema to be validated as a legal cerberus schema
according to the rules of this Validator object.

New in version 0.7.1.

	
validate_update(document, schema=None, context=None)

	Validates a Python dictionary against a validation schema. The
difference with validate() is that the required rule will be
ignored here.

	Parameters:	
	schema – optional validation schema. Defaults to None. If not
provided here, the schema must have been provided at
class instantiation.

	context – the context in which the document should be validated.
Defaults to None.

	Returns:	True if validation succeeds, False otherwise. Check the
errors() property for a list of validation errors.

Deprecated since version 0.4.0: Use validate() with update=True instead.

	
validated(*args, **kwargs)

	Wrapper around Validator.validate that returns the validated
document or None if validation failed.

Exceptions

	
class cerberus.SchemaError

	Raised when the validation schema is missing, has the wrong format or
contains errors.

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

Frequently Asked Questions

Can I use Cerberus to validate objectis?

Yes. See Validating user objects with Cerberus [http://nicolaiarocci.com/validating-user-objects-cerberus/].

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

Changelog

Here you can see the full list of changes between each Cerberus release.

Version 0.10

Not released yet.

	New: ‘excludes’ rule (calve). Addresses #132.

	New: Add testing with Docker (Frank Sachsenheim).

	New: ‘*of’-rules can be extended by concentating another rule (Frank
Sachsenheim).

	New: Known, validated definition schemas are cached, thus validation run-time
of schemas is reduced (Frank Sachsenheim).

	New: Implemented rules of a Validator-instance are accessible as
‘validation_rules’-property (Frank Sachsenheim).

	New: ‘rename’-rule renames a field to a given string during normalization
(Frank Sachsenheim).

	New: ‘rename_handler’-rule that takes an callable that renames unknown
fields (Frank Sachsenheim).

	New: ‘Validator.purge_unknown’-property and conditional purging of unknown fields
(Frank Sachsenheim).

	New: ‘Validator.trail’-property can be used to determine the relation of the
currently validating document to the ‘root_document’ (Frank Sachsenheim).

	Change: The processed root-document of is now available as ‘root_document’-
property of the (child-)Validator (Frank Sachsenheim).

	Change: Removed ‘context’-argument from ‘validate’-method as this is set
upon the creation of a child-validator (Frank Sachsenheim).

	Change: ‘ValidationError’-exception renamed to ‘DocumentError’ (Frank Sachsenheim).

	Change: Consolidated all schema-related error-messages’ names (Frank Sachsenheim).

	Change: Use a logger for deprecation-warnings if available (Frank Sachsenheim).

	Fix: ‘coerce’-constraints are validated (Frank Sachsenheim).

	Fix: Unknown fields are normalized (Frank Sachsenheim).

	Fix: Dependency on boolean field now works as expected. Addresses #138 (Roman
Redkovich)

	Fix: Add missing deprecation-warnings (Frank Sachsenheim).

Version 0.9.1

Released on July 7 2015

	Fix: ‘required’ is always evaluated, independent of eventual missing
dependencies. This changes the previous behaviour whereas a required field
with dependencies would only be reported as missing if all dependencies were
met. A missing required field will always be reported. Also see the
discussion in https://github.com/nicolaiarocci/eve/pull/665.

Version 0.9

Released on June 24 2015.
Codename: ‘Mastrolindo’.

	New: ‘oneof’ rule which provides a list of definitions in which only one
should validate (C.D. Clark III).

	New: ‘noneof’ rule which provides a list of definitions that should all not
validate (C.D. Clark III).

	New: ‘anyof’ rule accepts a list of definitions and checks that one
definition validates (C.D. Clark III).

	New: ‘allof’ rule validates if if all definitions validate (C.D. Clark III).

	New: ‘validator.validated’ takes a document as argument and returns
a validated document or ‘None’ if validation failed (Frank Sachsenheim).

	New: PyPy support (Frank Sachsenheim).

	New: Type coercion (Brett).

	New: Added ‘propertyschema’ validation rule (Frank Sachsenheim).

	Change: Use ‘str.format’ in error messages so if someone wants to override
them does not get an exception if arguments are not passed. Closes #105
(Brett).

	Change: ‘keyschema’ renamed to ‘valueschema’, print a deprecation warning
(Frank Sachsenheim).

	Change: ‘type’ can also be a list of types (Frank Sachsenheim).

	Fix: useages of ‘document’ to ‘self.document’ in ‘_validate’ (Frank
Sachsenheim).

	Fix: when ‘items’ is applied to a list, field name is used as key for
‘validator.errors’, and offending field indexes are used as keys for field
errors ({‘a_list_of_strings’: {1: ‘not a string’}}) ‘type’ can be a list of
valid types.

	Fix: Ensure that additional **kwargs of a subclass persist through
validation (Frank Sachsenheim).

	Fix: improve failure message when testing against multiple types (Frank
Sachsenheim).

	Fix: ignore ‘keyschema’ when not a mapping (Frank Sachsenheim).

	Fix: ignore ‘schema’ when not a sequence (Frank Sachsenheim).

	Fix: allow_unknown can also be set for nested dicts. Closes #75 (Tobias
Betz).

	Fix: raise SchemaError when an unallowed ‘type’ is used in conjunction with
‘schema’ rule (Tobias Betz).

	Docs: added section that points out that YAML, JSON, etc. can be used to
define schemas (C.D. Clark III).

	Docs: Improve ‘allow_unknown’ documentation (Frank Sachsenheim).

Version 0.8.1

Released on Mar 16 2015.

	Fix: dependency on a sub-document field does not work. Closes #64.

	Fix: readonly validation should happen before any other validation.
Closes #63.

	Fix: allow_unknown does not apply to sub-dictionaries in a list. Closes #67.

	Fix: two tests being ignored because of name typo.

	Fix: update mode does not ignore required fields in subdocuments. Closes #72.

	Fix: allow_unknown does not respect custom rules. Closes #66.

	Fix: typo in docstrings (Riccardo).

Version 0.8

Released on Jan 7 2015.

	‘dependencies’ also supports dependency values.

	‘allow_unknown’ can also be set to a validation schema, in which case unknown
fields will be validated against it. Closes nicolaiarocci/eve#405.

	New function-based custom validation mode (Luo Peng).

	Fields with empty definitions in schema were reported as non-existent. Now
they are considered as valid, whatever their value is (Jaroslav Semančík).

	If dependencies are precised for a ‘required’ field, then the presence of the
field is only validated if all dependencies are present (Trong Hieu HA).

	Documentation typo (Nikita Vlaznev #55).

	[CI] Add travis_retry to pip install in case of network issues (Helgi Þormar
Þorbjörnsson #49)

Version 0.7.2

Released on Jun 19 2014.

	Successfully validate int as float type (Florian Rathgeber).

Version 0.7.1

Released on Jun 17 2014.

	Validation schemas are now validated up-front. When you pass a Schema to the
Validator it will be validated against the supported ruleset (Paul Weaver).
Closes #39.

	Custom validators also have access to a special ‘self.document’ variable that
allows validation of a field to happen in context of the rest of the document
(Josh Villbrandt).

	Validator options like ‘allow_unknown’ and ‘ignore_none_values’ are now taken
into consideration when validating sub-dictionaries. Closes #40.

Version 0.7

Released on May 16 2014.

	Python 3.4 is now supported.

	tox support.

	Added ‘dependencies’ validation rule (Lujeni).

	Added ‘keyschema’ validation rule (Florian Rathgeber).

	Added ‘regex’ validation rule. Closes #29.

	Added ‘set’ as a core data type. Closes #31.

	Not-nullable fields are validated independetly of their type definition
(Jaroslav Semančík).

	Python trove classifiers added to setup.py. Closes #32.

	‘min’ and ‘max’ now apply to floats and numbers too. Closes #30.

Version 0.6

Released on February 10 2014

	Added ‘number’ data type, which validates against both float and integer
values (Brandon Aubie).

	Added support for running tests with py.test

	Fix non-blocking problem introduced with 0.5 (Martin Ortbauer).

	Fix bug when _error() is calld twice for a field (Jaroslav Semančík).

	More precise error message in rule ‘schema’ validation (Jaroslav Semančík).

	Use ‘allowed’ field for integer just like for string (Peter Demin).

Version 0.5

Released on December 4 2013

	‘validator.errors’ now returns a dictionary where keys are document fields
and values are lists of validation errors for the field.

	Validator instances are now callable. Instead of validated
= validator.validate(document) you can now choose to do ‘validated
= validator(document)’ (Eelke Hermens).

Version 0.4.0

Released on September 24 2013.

	‘validate_update’ is deprecated and will be removed with next release. Use
‘validate’ with ‘update=True’ instead. Closes #21.

	Fixed a minor encoding issue which made installing on Windows/Python3
impossible. Closes #19 (Arsh Singh).

	Fix documentation typo (Daniele Pizzolli).

	‘type’ validation is always performed first (only exception being
‘nullable’). On failure, subsequent rules on the same field are skipped.
Closes #18.

Version 0.3.0

Released on July 9 2013.

	docstrings now conform to PEP8.

	self.errors returns an empty list if validate() has not been called.

	added validation for the ‘float’ data type.

	‘nullable’ rule added to allow for null field values to be accepted in
validations. This is different than required in that you can actively change
a value to None instead of omitting or ignoring it. It is essentially the
ignore_none_values, allowing for more fine grained control down to the field
level (Kaleb Pomeroy).

Version 0.2.0

Released on April 18 2013.

	‘allow_unknown’ option added.

Version 0.1.0

Released on March 15 2013.
Codename: ‘Claw’.

	entering beta phase.

	support for Python 3.

	pep8 and pyflakes fixes (Harro van der Klauw).

	removed superflous typecheck for empty validator (Harro van der Klauw).

	‘ignore_none_values’ option to ignore None values when type checking (Harro
van der Klauw).

	‘minlenght’ and ‘maxlength’ now apply to lists as well (Harro van der Klauw).

Version 0.0.3

Released on January 29 2013

	when a list item fails, its offset is now returned along with the list name.

	‘transparent_schema_rules’ option added.

	‘empty’ rule for string fields.

	‘schema’ rule on lists of arbitrary lenght (Martjin Vermaat).

	‘allowed’ rule on strings (Martjin Vermaat).

	‘items’ (dict) is now deprecated. Use the upgraded ‘schema’ rule instead.

	AUTHORS file added to sources.

	CHANGES file added to sources.

Version 0.0.2

Released on November 22 2012.

	Added support for addition and validation of custom data types.

	Several documentation improvements.

Version 0.0.1

Released on October 16 2012.

First public preview release.

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

Authors

Cerberus is written and maintained by Nicola Iarocci and
various contributors:

Development Lead

	Nicola Iarocci <nicola@nicolaiarocci.com>

Patches and Suggestions

	Arsh Singh

	Brandon Aubie

	Brett

	C.D. Clark III

	Danielle Pizzolli

	Denis Carriere

	Eelke Hermens

	Florian Rathgeber

	Frank Sachsenheim

	Harro van der Klauw

	Jaroslav Semančík

	Kaleb Pomeroy

	Kirill Pavlov

	Lujeni

	Luo Peng

	Martijn Vermaat

	Martin Ortbauer

	Nikita Vlaznev

	Paul Weaver

	Peter Demin

	Riccardo

	Roman Redkovich

	Tobias Betz

	Trong Hieu HA

	calve

Add feature

	Sanhe Hu

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data validation library

Contact

If you’ve scoured the prose and API documentation and still can’t find an answer to your question, below are various support resources that should help. We do request that you do at least skim the documentation before posting tickets or mailing list questions, however!

If you’d like to stay up to date on the community and development of Cerberus,
there are several options:

Blog

New releases are usually announced on my Website [http://nicolaiarocci.com/tag/cerberus].

Twitter

I often tweet about new features and releases of Cerberus. Follow @nicolaiarocci [https://twitter.com/nicolaiarocci].

Mailing List

The mailing list [https://groups.google.com/forum/#!forum/python-eve] is intended to be a low traffic resource for users,
developers and contributors of both the Cerberus and Eve projects.

Bugs/ticket tracker

To file new bugs or search existing ones, you may visit Issues [https://github.com/nicolaiarocci/cerberus/issues] page. This
does require a (free, easy to set up) Github account.

GitHub

Of course the best way to track the development of Cerberus is through the
GitHub repo [https://github.com/nicolaiarocci/cerberus].

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Python data validation library

License

Cerberus is an open source project by Nicola Iarocci [http://nicolaiarocci.com].

Copyright (c) 2012-2015 Nicola Iarocci.

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Python data validation library

Index

 C
 | E
 | S
 | V

C

 	

 	current (cerberus.Validator attribute)

E

 	

 	errors (cerberus.Validator attribute)

S

 	

 	SchemaError (class in cerberus)

V

 	

 	validate() (cerberus.Validator method)

 	validate_schema() (cerberus.Validator method)

 	validate_update() (cerberus.Validator method)

 	

 	validated() (cerberus.Validator method)

 	Validator (class in cerberus)

 Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_static/down.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

search.html

 Navigation

 		
 index

 		Python data validation library »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2015, Nicola Iarocci.
 Created using Sphinx 1.3.1.

_static/file.png

_static/comment.png

_static/down-pressed.png

_static/cerberus.png

_static/plus.png

_static/up-pressed.png

_static/minus.png

