Cerberus Usage

Basic Usage

You define a validation schema and pass it to an instance of the Validator class:

>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)

Then you simply invoke the validate() to validate a dictionary against the schema. If validation succeeds, True is returned:

>>> document = {'name': 'john doe'}
>>> v.validate(document)
True

Alternatively, you can pass both the dictionary and the schema to the validate() method:

>>> v = Validator()
>>> v.validate(document, schema)
True

Which can be handy if your schema is changing through the life of the instance.

Unlike other validation tools, Cerberus will not halt and raise an exception on the first validation issue. The whole document will always be processed, and False will be returned if validation failed. You can then access the errors() method to obtain a list of issues.

>>> schema = {'name': {'type': 'string'}, 'age': {'type': 'integer', 'min': 10}}
>>> document = {'name': 'Little Joe', 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10'}

You will still get SchemaError and DocumentError exceptions.

Changed in version 0.4.1: The Validator class is callable, allowing for the following shorthand syntax:

>>> document = {'name': 'john doe'}
>>> v(document)
True

Validation Schema

A validation schema is a dictionary. Schema keys are the keys allowed in the target dictionary. Schema values express the rules that must be matched by the corresponding target values.

schema = {'name': {'type': 'string', 'maxlength': 10}}

In the example above we define a target dictionary with only one key, name, which is expected to be a string not longer than 10 characters. Something like {'name': 'john doe'} would validate, while something like {'name': 'a very long string'} or {'name': 99} would not.

By definition all keys are optional unless the required rule is set for a key.

Validation Rules

The following rules are currently supported:

type

Data type allowed for the key value. Can be one of the following:
  • string
  • bytes
  • integer
  • float
  • number (integer or float)
  • boolean
  • datetime
  • date
  • dict (formally collections.mapping)
  • list (formally collections.sequence, excluding strings)
  • set

A list of types can be used to allow different values:

>>> v.schema = {'quotes': {'type': ['string', 'list']}}
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': ['Do not disturb my circles!', 'Heureka!']})
True
>>> v.schema = {'quotes': {'type': ['string', 'list'], 'schema': {'type': 'string'}}}
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': [1, 'Heureka!']})
False
>>> v.errors
{'quotes': {0: 'must be of string type'}}

You can extend this list and support custom types, see Custom Data Types.

Note

Please note that type validation is performed before any other validation rule which might exist on the same field (only exception being the nullable rule). In the occurrence of a type failure subsequent validation rules on the field will be skipped and validation will continue on other fields. This allows to safely assume that field type is correct when other (standard or custom) rules are invoked.

Changed in version 0.9: If a list of types is given, the key value must match any of them.

Changed in version 0.7.1: dict and list typechecking are now performed with the more generic Mapping and Sequence types from the builtin collections module. This means that instances of custom types designed to the same interface as the builtin dict and list types can be validated with Cerberus. We exclude strings when type checking for list/Sequence because it in the validation situation it is almost certain the string was not the intended data type for a sequence.

Changed in version 0.7: Added the set data type.

Changed in version 0.6: Added the number data type.

Changed in version 0.4.0: Type validation is always executed first, and blocks other field validation rules on failure.

Changed in version 0.3.0: Added the float data type.

required

If True the key/value pair is mandatory. Validation will fail when it is missing, unless validate() is called with update=True:

>>> v.schema = {'name': {'required': True, 'type': 'string'}, 'age': {'type': 'integer'}}
>>> document = {'age': 10}
>>> v.validate(document)
False
>>> v.errors
{'name': 'required field'}

>>> v.validate(document, update=True)
True

Note

String fields with empty values will still be validated, even when required is set to True. If you don’t want to accept empty values, see the empty rule. Also, if dependencies are declared for the field, its required rule will only be validated if all dependencies are included with the document.

Changed in version 0.8: Check field dependencies.

readonly

If True the value is readonly. Validation will fail if this field is present in the target dictionary.

nullable

If True the field value can be set to None. It is essentially the functionality of the ignore_none_values parameter of the Validator Class, but allowing for more fine grained control down to the field level.

>>> v.schema = {'a_nullable_integer': {'nullable': True, 'type': 'integer'}, 'an_integer': {'type': 'integer'}}

>>> v.validate({'a_nullable_integer': 3})
True
>>> v.validate({'a_nullable_integer': None})
True

>>> v.validate({'an_integer': 3})
True
>>> v.validate({'an_integer': None})
False
>>> v.errors
{'an_integer': 'null value not allowed'}

Changed in version 0.7: nullable is valid on fields lacking type definition.

New in version 0.3.0.

minlength, maxlength

Minimum and maximum length allowed for string and list types.

min, max

Minimum and maximum value allowed for integer, float and number types.

minsize, maxsize

Minimum and maximum size in bytes allowed for bytes types.

before, after

Minimum and maximum bound allowed for datetime and date types.

Changed in version 0.7: Added support for float and number types.

allowed

Allowed values for string, list and int types. Validation will fail if target values are not included in the allowed list.

>>> v.schema = {'role': {'type': 'list', 'allowed': ['agent', 'client', 'supplier']}}
>>> v.validate({'role': ['agent', 'supplier']})
True

>>> v.validate({'role': ['intern']})
False
>>> v.errors
{'role': "unallowed values ['intern']"}

>>> v.schema = {'role': {'type': 'string', 'allowed': ['agent', 'client', 'supplier']}}
>>> v.validate({'role': 'supplier'})
True

>>> v.validate({'role': 'intern'})
False
>>> v.errors
{'role': 'unallowed value intern'}

>>> v.schema = {'a_restricted_integer': {'type': 'integer', 'allowed': [-1, 0, 1]}}
>>> v.validate({'a_restricted_integer': -1})
True

>>> v.validate({'a_restricted_integer': 2})
False
>>> v.errors
{'a_restricted_integer': 'unallowed value 2'}

Changed in version 0.5.1: Added support for the int type.

empty

Only applies to string fields. If False validation will fail if the value is empty. Defaults to True.

>>> schema = {'name': {'type': 'string', 'empty': False}}
>>> document = {'name': ''}
>>> v.validate(document, schema)
False

>>> v.errors
{'name': 'empty values not allowed'}

New in version 0.0.3.

items (dict)

Deprecated since version 0.0.3: Use schema (dict) instead.

When a dictionary, items defines the validation schema for items in a list type:

>>> schema = {'rows': {'type': 'list', 'items': {'sku': {'type': 'string'}, 'price': {'type': 'integer'}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True

Note

The items (dict) rule is deprecated, and will be removed in a future release.

items (list)

When a list, items defines a list of values allowed in a list type of fixed length in the given order:

>>> schema = {'list_of_values': {'type': 'list', 'items': [{'type': 'string'}, {'type': 'integer'}]}}
>>> document = {'list_of_values': ['hello', 100]}
>>> v.validate(document, schema)
True
>>> document = {'list_of_values': [100, 'hello']}
>>> v.validate(document, schema)
False

See schema (dict) rule below for dealing with arbitrary length list types.

schema (dict)

Validation rules for Mappings-fields.

>>> schema = {'a_dict': {'type': 'dict', 'schema': {'address': {'type': 'string'}, 'city': {'type': 'string', 'required': True}}}}
>>> document = {'a_dict': {'address': 'my address', 'city': 'my town'}}
>>> v.validate(document, schema)
True

Note

If all keys should share the same validation rules you probably want to use valueschema instead.

schema (list)

You can also use this rule to validate arbitrary length Sequence-items.

>>> schema = {'a_list': {'type': 'list', 'schema': {'type': 'integer'}}}
>>> document = {'a_list': [3, 4, 5]}
>>> v.validate(document, schema)
True

The schema rule on list types is also the prefered method for defining and validating a list of dictionaries.

>>> schema = {'rows': {'type': 'list', 'schema': {'type': 'dict', 'schema': {'sku': {'type': 'string'}, 'price': {'type': 'integer'}}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True

Changed in version 0.0.3: Schema rule for list types of arbitrary length

valueschema

Validation schema for all values of a dict. The dict can have arbitrary keys, the values for all of which must validate with given schema:

>>> schema = {'numbers': {'type': 'dict', 'valueschema': {'type': 'integer', 'min': 10}}}
>>> document = {'numbers': {'an integer': 10, 'another integer': 100}}
>>> v.validate(document, schema)
True

>>> document = {'numbers': {'an integer': 9}}
>>> v.validate(document, schema)
False

>>> v.errors
{'numbers': {'an integer': 'min value is 10'}}

New in version 0.7.

Changed in version 0.9: renamed keyschema to valueschema

propertyschema

This is the counterpart to valueschema that validates the keys of a dict. For historical reasons it is not named keyschema.

>>> schema = {'a_dict': {'type': 'dict', 'propertyschema': {'type': 'string', 'regex': '[a-z]+'}}}
>>> document = {'a_dict': {'key': 'value'}}
>>> v.validate(document, schema)
True

>>> document = {'a_dict': {'KEY': 'value'}}
>>> v.validate(document, schema)
False

New in version 0.9.

regex

Validation will fail if field value does not match the provided regex rule. Only applies to string fiels.

>>> schema = {'email': {'type': 'string', 'regex': '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'}}
>>> document = {'email': 'john@example.com'}
>>> v.validate(document, schema)
True

>>> document = {'email': 'john_at_example_dot_com'}
>>> v.validate(document, schema)
False

>>> v.errors
{'email': "value does not match regex '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$'"}

For details on regex rules, see Regular Expressions Syntax on Python official site.

New in version 0.7.

dependencies

This rule allows for either a list or dict of dependencies. When a list is provided, all listed fields must be present in order for the target field to be validated.

>>> schema = {'field1': {'required': False}, 'field2': {'required': False, 'dependencies': ['field1']}}
>>> document = {'field1': 7}
>>> v.validate(document, schema)
True

>>> document = {'field2': 7}
>>> v.validate(document, schema)
False

>>> v.errors
{'field2': "field 'field1' is required"}

When a dictionary is provided, then not only all dependencies must be present, but also any of their allowed values must be matched.

>>> schema = {'field1': {'required': False}, 'field2': {'required': True, 'dependencies': {'field1': ['one', 'two']}}}

>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True

>>> document = {'field1': 'three', 'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one', 'two']"}

>>> # same as using a dependencies list
>>> document = {'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one', 'two']"}

>>> # one can also pass a single dependency value
>>> schema = {'field1': {'required': False}, 'field2': {'dependencies': {'field1': 'one'}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True

>>> document = {'field1': 'two', 'field2': 7}
>>> v.validate(document, schema)
False

>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one']"}

Dependencies on sub-document fields are also supported:

>>> schema = {
...   'test_field': {'dependencies': ['a_dict.foo', 'a_dict.bar']},
...   'a_dict': {
...     'type': 'dict',
...     'schema': {
...       'foo': {'type': 'string'},
...       'bar': {'type': 'string'}
...     }
...   }
... }

>>> document = {'test_field': 'foobar', 'a_dict': {'foo': 'foo'}}
>>> v.validate(document, schema)
False

>>> v.errors
{'test_field': "field 'a_dict.bar' is required"}

Changed in version 0.8.1: Support for sub-document fields as dependencies.

Changed in version 0.8: Support for dependencies as a dictionary.

New in version 0.7.

*of-rules

These rules allow you to list multiple sets of rules to validate against. The field will be considered valid if it validates against the set in the list according to the prefixes logics all, any, one or none.

New in version 0.9.

anyof

Validates if any of the provided constraints validates the field.

allof

Validates if all of the provided constraints validates the field.

noneof

Validates if none of the provided constraints validates the field.

oneof

Validates if exactly one of the provided constraints applies.

For example, to verify that a property is a number between 0 and 10 or 100 and 110, you could do the following:

>>> schema = {'prop1':
...           {'type': 'number',
...            'anyof':
...            [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}}

>>> document = {'prop1': 5}
>>> v.validate(document, schema)
True

>>> document = {'prop1': 105}
>>> v.validate(document, schema)
True

>>> document = {'prop1': 55}
>>> v.validate(document, schema)
False
>>> v.errors   
{'prop1': {'anyof': 'no definitions validated', 'definition 1': 'min value is 100', 'definition 0': 'max value is 10'}}

The anyof rule works by creating a new instance of a schema for each item in the list. The above schema is equivalent to creating two separate schemas:

>>> schema1 = {'prop1': {'type': 'number', 'min':   0, 'max':  10}}
>>> schema2 = {'prop1': {'type': 'number', 'min': 100, 'max': 110}}

>>> document = {'prop1': 5}
>>> v.validate(document, schema1) or v.validate(document, schema2)
True

>>> document = {'prop1': 105}
>>> v.validate(document, schema1) or v.validate(document, schema2)
True

>>> document = {'prop1': 55}
>>> v.validate(document, schema1) or v.validate(document, schema2)
False

*of-rules typesaver

You can concatenate any of-rule with an underscore and another rule with a list of rule-values to save typing:

{'foo': {'anyof_type': ['string', 'integer']}}
# is equivalent to
{'foo': {'anyof': [{'type': 'string'}, {'type': 'integer'}]}}

Thus you can use this to validate a document against several schemas without implementing your own logic:

>>> schemas = [{'department': {'required': True, 'regex': '^IT$'}, 'phone': {'nullable': True}},
...            {'department': {'required': True}, 'phone': {'required': True}}]
>>> emloyee_vldtr = Validator({'employee': {'oneof_schema': schemas, 'type': 'dict'}}, allow_unknown=True)
>>> invalid_employees_phones = []
>>> for employee in employees:
...     if not employee_vldtr.validate(employee):
...         invalid_employees_phones.append(employee)

excludes

You can declare fields to excludes others:

>>> v = Validator()
>>> schema = {'this_field': {'type': 'dict',
...                          'excludes': 'that_field'},
...           'that_field': {'type': 'dict',
...                          'excludes': 'this_field'}}
>>> v.validate({'this_field': {}, 'that_field': {}}, schema)
False
>>> v.validate({'this_field': {}}, schema)
True
>>> v.validate({'that_field': {}}, schema)
True
>>> v.validate({}, schema)
True

You can require both field to build an exclusive or:

>>> v = Validator()
>>> schema = {'this_field': {'type': 'dict',
...                          'excludes': 'that_field',
...                          'required': True},
...           'that_field': {'type': 'dict',
...                          'excludes': 'this_field',
...                          'required': True}}
>>> v.validate({'this_field': {}, 'that_field': {}}, schema)
False
>>> v.validate({'this_field': {}}, schema)
True
>>> v.validate({'that_field': {}}, schema)
True
>>> v.validate({}, schema)
False

You can also pass multiples fields to exclude in a list :

>>> schema = {'this_field': {'type': 'dict',
...                          'excludes': ['that_field', 'bazo_field']},
...           'that_field': {'type': 'dict',
...                          'excludes': 'this_field'},
...           'bazo_field': {'type': 'dict'}}
>>> v.validate({'this_field': {}, 'bazo_field': {}}, schema)
False

Allowing the Unknown

By default only keys defined in the schema are allowed:

>>> schema = {'name': {'type': 'string', 'maxlength': 10}}
>>> v.validate({'name': 'john', 'sex': 'M'}, schema)
False
>>> v.errors
{'sex': 'unknown field'}

However, you can allow unknown key/value pairs by either setting allow_unknown to True:

>>> v.schema = {}
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True

Or you can set allow_unknown to a validation schema, in which case unknown fields will be validated against it:

>>> v.schema = {}
>>> v.allow_unknown = {'type': 'string'}
>>> v.validate({'an_unknown_field': 'john'})
True
>>> v.validate({'an_unknown_field': 1})
False
>>> v.errors
{'an_unknown_field': 'must be of string type'}

allow_unknown can also be set at initialization:

>>> v.schema = {}
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True

allow_unknown can also be set as rule to configure a validator for a nested mapping that is checked against the schema-rule:

>>> v = Validator()
>>> v.allow_unknown
False

>>> schema = {
...   'name': {'type': 'string'},
...   'a_dict': {
...     'type': 'dict',
...     'allow_unknown': True,  # this overrides the behaviour for
...     'schema': {             # the validation of this definition
...       'address': {'type': 'string'}
...     }
...   }
... }

>>> v.validate({'name': 'john', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
True

>>> # this fails as allow_unknown is still False for the parent document.
>>> v.validate({'name': 'john', 'an_unknown_field': 'is not allowed', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
False

>>> v.errors
{'an_unknown_field': 'unknown field'}

Changed in version 0.9: allow_unknown can also be set for nested dict fields.

Changed in version 0.8: allow_unknown can also be set to a validation schema.

Normalization Rules

Renaming Of Fields

You can define a field to be renamed before any further processing.

>>> v = Validator({'foo': {'rename': 'bar'}})
>>> v.normalized({'foo': 0})
{'bar': 0}

To let a callable rename a field or arbitrary fields, you can define a handler for renaming:

>>> v = Validator({}, allow_unknown={'rename_handler': int})
>>> v.normalized({'0': 'foo'})
{0: 'foo'}

Purging Unknown Fields

After renaming, unknown fields will be purged if the purge_unknown-property of a Validator-instance is True. You can set the property per keyword-argument upon initialization or as rule for subdocuments like allow_unknown. The default is False.

>>> v = Validator({'foo': {'type': 'string'}}, purge_unknown=True)
>>> v.normalized({'bar': 'foo'})
{}

Value Coercion

Coercion allows you to apply a callable to a value before the document is validated. The return value of the callable replaces the new value in the document. This can be used to convert values or sanitize data before it is validated.

>>> v.schema = {'amount': {'type': 'integer'}}
>>> v.validate({'amount': '1'})
False

>>> v.schema = {'amount': {'type': 'integer', 'coerce': int}}
>>> v.validate({'amount': '1'})
True
>>> v.document
{'amount': 1}

>>> to_bool = lambda v: v.lower() in ['true', '1']
>>> v.schema = {'flag': {'type': 'boolean', 'coerce': to_bool}}
>>> v.validate({'flag': 'true'})
True
>>> v.document
{'flag': True}

New in version 0.9.

Fetching Processed Documents

Beside the document-property a Validator-instance has shorthand methods to process a document and fetch its processed result.

validated Method

There’s a wrapper-method validated that returns the validated document. If the document didn’t validate None is returned. It can be useful for flows like this:

v = Validator(schema)
valid_documents = [x for x in [v.validated(y) for y in documents] if x is not None]

If a coercion callable raises a TypeError or ValueError then the exception will be caught and the validation with fail. All other exception pass through.

New in version 0.9.

normalized Method

Similary, the normalized-method returns a normalized copy of a document without validating it:

>>> schema = {'amount': {'coerce': int}}
>>> document = {'model': 'consumerism', 'amount': '1'}
>>> normalized_document = v.normalized(document, schema)
>>> type(normalized_document['amount'])
<type 'int'>

New in version 0.10.

Schema Definition Formats

Cerberus schemas are built with vanilla Python types: dict, list, string, etc. Even user-defined validation rules are invoked in the schema by name, as a string. A useful side effect of this design is that schemas can be defined in a number of ways, for example with PyYAML.

>>> import yaml
>>> schema_text = '''
... name:
...   type: string
... age:
...   type: integer
...   min: 10
... '''
>>> schema = yaml.load(schema_text)
>>> document = {'name': 'Little Joe', 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10'}

You don’t have to use YAML of course, you can use your favorate serializer. JSON for example. As long as there is a decoder thant can produce a nested dict, you can use it to define a schema.