Cerberus Usage¶
Basic Usage¶
You define a validation schema and pass it to an instance of the
Validator
class:
>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)
Then you simply invoke the validate()
to validate
a dictionary against the schema. If validation succeeds, True
is returned:
>>> document = {'name': 'john doe'}
>>> v.validate(document)
True
Alternatively, you can pass both the dictionary and the schema to the
validate()
method:
>>> v = Validator()
>>> v.validate(document, schema)
True
Which can be handy if your schema is changing through the life of the instance.
Unlike other validation tools, Cerberus will not halt and raise an exception on
the first validation issue. The whole document will always be processed, and
False
will be returned if validation failed. You can then access the
errors()
method to obtain a list of issues.
>>> schema = {'name': {'type': 'string'}, 'age': {'type': 'integer', 'min': 10}}
>>> document = {'name': 'Little Joe', 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10'}
You will still get SchemaError
and
DocumentError
exceptions.
Changed in version 0.4.1: The Validator class is callable, allowing for the following shorthand syntax:
>>> document = {'name': 'john doe'}
>>> v(document)
True
Validation Schema¶
A validation schema is a dictionary. Schema keys are the keys allowed in the target dictionary. Schema values express the rules that must be matched by the corresponding target values.
schema = {'name': {'type': 'string', 'maxlength': 10}}
In the example above we define a target dictionary with only one key, name
,
which is expected to be a string not longer than 10 characters. Something like
{'name': 'john doe'}
would validate, while something like {'name': 'a
very long string'}
or {'name': 99}
would not.
By definition all keys are optional unless the required rule is set for a key.
Validation Rules¶
The following rules are currently supported:
type¶
- Data type allowed for the key value. Can be one of the following:
string
bytes
integer
float
number
(integer or float)boolean
datetime
date
dict
(formallycollections.mapping
)list
(formallycollections.sequence
, excluding strings)set
A list of types can be used to allow different values:
>>> v.schema = {'quotes': {'type': ['string', 'list']}}
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': ['Do not disturb my circles!', 'Heureka!']})
True
>>> v.schema = {'quotes': {'type': ['string', 'list'], 'schema': {'type': 'string'}}}
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': [1, 'Heureka!']})
False
>>> v.errors
{'quotes': {0: 'must be of string type'}}
You can extend this list and support custom types, see Custom Data Types.
Note
Please note that type validation is performed before any other validation
rule which might exist on the same field (only exception being the
nullable
rule). In the occurrence of a type failure subsequent
validation rules on the field will be skipped and validation will continue
on other fields. This allows to safely assume that field type is correct
when other (standard or custom) rules are invoked.
Changed in version 0.9: If a list of types is given, the key value must match any of them.
Changed in version 0.7.1: dict
and list
typechecking are now performed with the more generic
Mapping
and Sequence
types from the builtin collections
module.
This means that instances of custom types designed to the same interface as
the builtin dict
and list
types can be validated with Cerberus. We
exclude strings when type checking for list
/Sequence
because it
in the validation situation it is almost certain the string was not the
intended data type for a sequence.
Changed in version 0.7: Added the set
data type.
Changed in version 0.6: Added the number
data type.
Changed in version 0.4.0: Type validation is always executed first, and blocks other field validation rules on failure.
Changed in version 0.3.0: Added the float
data type.
required¶
If True
the key/value pair is mandatory. Validation will fail when it is
missing, unless validate()
is called with
update=True
:
>>> v.schema = {'name': {'required': True, 'type': 'string'}, 'age': {'type': 'integer'}}
>>> document = {'age': 10}
>>> v.validate(document)
False
>>> v.errors
{'name': 'required field'}
>>> v.validate(document, update=True)
True
Note
String fields with empty values will still be validated, even when
required
is set to True
. If you don’t want to accept empty values,
see the empty rule. Also, if dependencies are declared for the field, its
required
rule will only be validated if all dependencies are
included with the document.
Changed in version 0.8: Check field dependencies.
readonly¶
If True
the value is readonly. Validation will fail if this field is present
in the target dictionary.
nullable¶
If True
the field value can be set to None
. It is essentially the
functionality of the ignore_none_values
parameter of the Validator Class,
but allowing for more fine grained control down to the field level.
>>> v.schema = {'a_nullable_integer': {'nullable': True, 'type': 'integer'}, 'an_integer': {'type': 'integer'}}
>>> v.validate({'a_nullable_integer': 3})
True
>>> v.validate({'a_nullable_integer': None})
True
>>> v.validate({'an_integer': 3})
True
>>> v.validate({'an_integer': None})
False
>>> v.errors
{'an_integer': 'null value not allowed'}
Changed in version 0.7: nullable
is valid on fields lacking type definition.
New in version 0.3.0.
minlength, maxlength¶
Minimum and maximum length allowed for string
and list
types.
min, max¶
Minimum and maximum value allowed for integer
, float
and number
types.
minsize, maxsize¶
Minimum and maximum size in bytes allowed for bytes
types.
before, after¶
Minimum and maximum bound allowed for datetime
and date
types.
Changed in version 0.7: Added support for float
and number
types.
allowed¶
Allowed values for string
, list
and int
types. Validation will fail
if target values are not included in the allowed list.
>>> v.schema = {'role': {'type': 'list', 'allowed': ['agent', 'client', 'supplier']}}
>>> v.validate({'role': ['agent', 'supplier']})
True
>>> v.validate({'role': ['intern']})
False
>>> v.errors
{'role': "unallowed values ['intern']"}
>>> v.schema = {'role': {'type': 'string', 'allowed': ['agent', 'client', 'supplier']}}
>>> v.validate({'role': 'supplier'})
True
>>> v.validate({'role': 'intern'})
False
>>> v.errors
{'role': 'unallowed value intern'}
>>> v.schema = {'a_restricted_integer': {'type': 'integer', 'allowed': [-1, 0, 1]}}
>>> v.validate({'a_restricted_integer': -1})
True
>>> v.validate({'a_restricted_integer': 2})
False
>>> v.errors
{'a_restricted_integer': 'unallowed value 2'}
Changed in version 0.5.1: Added support for the int
type.
empty¶
Only applies to string fields. If False
validation will fail if the value
is empty. Defaults to True
.
>>> schema = {'name': {'type': 'string', 'empty': False}}
>>> document = {'name': ''}
>>> v.validate(document, schema)
False
>>> v.errors
{'name': 'empty values not allowed'}
New in version 0.0.3.
items (dict)¶
Deprecated since version 0.0.3: Use schema (dict) instead.
When a dictionary, items
defines the validation schema for items in
a list
type:
>>> schema = {'rows': {'type': 'list', 'items': {'sku': {'type': 'string'}, 'price': {'type': 'integer'}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True
Note
The items (dict) rule is deprecated, and will be removed in a future release.
items (list)¶
When a list, items
defines a list of values allowed in a list
type of
fixed length in the given order:
>>> schema = {'list_of_values': {'type': 'list', 'items': [{'type': 'string'}, {'type': 'integer'}]}}
>>> document = {'list_of_values': ['hello', 100]}
>>> v.validate(document, schema)
True
>>> document = {'list_of_values': [100, 'hello']}
>>> v.validate(document, schema)
False
See schema (dict) rule below for dealing with arbitrary length list
types.
schema (dict)¶
Validation rules for Mappings-fields.
>>> schema = {'a_dict': {'type': 'dict', 'schema': {'address': {'type': 'string'}, 'city': {'type': 'string', 'required': True}}}}
>>> document = {'a_dict': {'address': 'my address', 'city': 'my town'}}
>>> v.validate(document, schema)
True
Note
If all keys should share the same validation rules you probably want to use valueschema instead.
schema (list)¶
You can also use this rule to validate arbitrary length Sequence-items.
>>> schema = {'a_list': {'type': 'list', 'schema': {'type': 'integer'}}}
>>> document = {'a_list': [3, 4, 5]}
>>> v.validate(document, schema)
True
The schema rule on list
types is also the prefered method for defining
and validating a list of dictionaries.
>>> schema = {'rows': {'type': 'list', 'schema': {'type': 'dict', 'schema': {'sku': {'type': 'string'}, 'price': {'type': 'integer'}}}}}
>>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
>>> v.validate(document, schema)
True
Changed in version 0.0.3: Schema rule for list
types of arbitrary length
valueschema¶
Validation schema for all values of a dict
. The dict
can have arbitrary
keys, the values for all of which must validate with given schema:
>>> schema = {'numbers': {'type': 'dict', 'valueschema': {'type': 'integer', 'min': 10}}}
>>> document = {'numbers': {'an integer': 10, 'another integer': 100}}
>>> v.validate(document, schema)
True
>>> document = {'numbers': {'an integer': 9}}
>>> v.validate(document, schema)
False
>>> v.errors
{'numbers': {'an integer': 'min value is 10'}}
New in version 0.7.
Changed in version 0.9: renamed keyschema
to valueschema
propertyschema¶
This is the counterpart to valueschema
that validates the keys of a dict
. For historical reasons
it is not named keyschema
.
>>> schema = {'a_dict': {'type': 'dict', 'propertyschema': {'type': 'string', 'regex': '[a-z]+'}}}
>>> document = {'a_dict': {'key': 'value'}}
>>> v.validate(document, schema)
True
>>> document = {'a_dict': {'KEY': 'value'}}
>>> v.validate(document, schema)
False
New in version 0.9.
regex¶
Validation will fail if field value does not match the provided regex rule. Only applies to string fiels.
>>> schema = {'email': {'type': 'string', 'regex': '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'}}
>>> document = {'email': 'john@example.com'}
>>> v.validate(document, schema)
True
>>> document = {'email': 'john_at_example_dot_com'}
>>> v.validate(document, schema)
False
>>> v.errors
{'email': "value does not match regex '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$'"}
For details on regex rules, see Regular Expressions Syntax on Python official site.
New in version 0.7.
dependencies¶
This rule allows for either a list or dict of dependencies. When a list is provided, all listed fields must be present in order for the target field to be validated.
>>> schema = {'field1': {'required': False}, 'field2': {'required': False, 'dependencies': ['field1']}}
>>> document = {'field1': 7}
>>> v.validate(document, schema)
True
>>> document = {'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': "field 'field1' is required"}
When a dictionary is provided, then not only all dependencies must be present, but also any of their allowed values must be matched.
>>> schema = {'field1': {'required': False}, 'field2': {'required': True, 'dependencies': {'field1': ['one', 'two']}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True
>>> document = {'field1': 'three', 'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one', 'two']"}
>>> # same as using a dependencies list
>>> document = {'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one', 'two']"}
>>> # one can also pass a single dependency value
>>> schema = {'field1': {'required': False}, 'field2': {'dependencies': {'field1': 'one'}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True
>>> document = {'field1': 'two', 'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': "field 'field1' is required with one of these values: ['one']"}
Dependencies on sub-document fields are also supported:
>>> schema = {
... 'test_field': {'dependencies': ['a_dict.foo', 'a_dict.bar']},
... 'a_dict': {
... 'type': 'dict',
... 'schema': {
... 'foo': {'type': 'string'},
... 'bar': {'type': 'string'}
... }
... }
... }
>>> document = {'test_field': 'foobar', 'a_dict': {'foo': 'foo'}}
>>> v.validate(document, schema)
False
>>> v.errors
{'test_field': "field 'a_dict.bar' is required"}
Changed in version 0.8.1: Support for sub-document fields as dependencies.
Changed in version 0.8: Support for dependencies as a dictionary.
New in version 0.7.
*of-rules¶
These rules allow you to list multiple sets of rules to validate against. The field will be considered valid if it validates against the set in the list according to the prefixes logics all
, any
, one
or none
.
New in version 0.9.
anyof¶
Validates if any of the provided constraints validates the field.
allof¶
Validates if all of the provided constraints validates the field.
noneof¶
Validates if none of the provided constraints validates the field.
oneof¶
Validates if exactly one of the provided constraints applies.
For example, to verify that a property is a number between 0 and 10 or 100 and 110, you could do the following:
>>> schema = {'prop1':
... {'type': 'number',
... 'anyof':
... [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}}
>>> document = {'prop1': 5}
>>> v.validate(document, schema)
True
>>> document = {'prop1': 105}
>>> v.validate(document, schema)
True
>>> document = {'prop1': 55}
>>> v.validate(document, schema)
False
>>> v.errors
{'prop1': {'anyof': 'no definitions validated', 'definition 1': 'min value is 100', 'definition 0': 'max value is 10'}}
The anyof
rule works by creating a new instance of a schema for each item in the list. The above schema is equivalent to creating two separate schemas:
>>> schema1 = {'prop1': {'type': 'number', 'min': 0, 'max': 10}}
>>> schema2 = {'prop1': {'type': 'number', 'min': 100, 'max': 110}}
>>> document = {'prop1': 5}
>>> v.validate(document, schema1) or v.validate(document, schema2)
True
>>> document = {'prop1': 105}
>>> v.validate(document, schema1) or v.validate(document, schema2)
True
>>> document = {'prop1': 55}
>>> v.validate(document, schema1) or v.validate(document, schema2)
False
*of-rules typesaver¶
You can concatenate any of-rule with an underscore and another rule with a list of rule-values to save typing:
{'foo': {'anyof_type': ['string', 'integer']}}
# is equivalent to
{'foo': {'anyof': [{'type': 'string'}, {'type': 'integer'}]}}
Thus you can use this to validate a document against several schemas without implementing your own logic:
>>> schemas = [{'department': {'required': True, 'regex': '^IT$'}, 'phone': {'nullable': True}},
... {'department': {'required': True}, 'phone': {'required': True}}]
>>> emloyee_vldtr = Validator({'employee': {'oneof_schema': schemas, 'type': 'dict'}}, allow_unknown=True)
>>> invalid_employees_phones = []
>>> for employee in employees:
... if not employee_vldtr.validate(employee):
... invalid_employees_phones.append(employee)
excludes¶
You can declare fields to excludes others:
>>> v = Validator()
>>> schema = {'this_field': {'type': 'dict',
... 'excludes': 'that_field'},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field'}}
>>> v.validate({'this_field': {}, 'that_field': {}}, schema)
False
>>> v.validate({'this_field': {}}, schema)
True
>>> v.validate({'that_field': {}}, schema)
True
>>> v.validate({}, schema)
True
You can require both field to build an exclusive or:
>>> v = Validator()
>>> schema = {'this_field': {'type': 'dict',
... 'excludes': 'that_field',
... 'required': True},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field',
... 'required': True}}
>>> v.validate({'this_field': {}, 'that_field': {}}, schema)
False
>>> v.validate({'this_field': {}}, schema)
True
>>> v.validate({'that_field': {}}, schema)
True
>>> v.validate({}, schema)
False
You can also pass multiples fields to exclude in a list :
>>> schema = {'this_field': {'type': 'dict',
... 'excludes': ['that_field', 'bazo_field']},
... 'that_field': {'type': 'dict',
... 'excludes': 'this_field'},
... 'bazo_field': {'type': 'dict'}}
>>> v.validate({'this_field': {}, 'bazo_field': {}}, schema)
False
Allowing the Unknown¶
By default only keys defined in the schema are allowed:
>>> schema = {'name': {'type': 'string', 'maxlength': 10}}
>>> v.validate({'name': 'john', 'sex': 'M'}, schema)
False
>>> v.errors
{'sex': 'unknown field'}
However, you can allow unknown key/value pairs by either setting
allow_unknown
to True
:
>>> v.schema = {}
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True
Or you can set allow_unknown
to a validation schema, in which case
unknown fields will be validated against it:
>>> v.schema = {}
>>> v.allow_unknown = {'type': 'string'}
>>> v.validate({'an_unknown_field': 'john'})
True
>>> v.validate({'an_unknown_field': 1})
False
>>> v.errors
{'an_unknown_field': 'must be of string type'}
allow_unknown
can also be set at initialization:
>>> v.schema = {}
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True
allow_unknown
can also be set as rule to configure a validator for a nested mapping that is checked against the schema
-rule:
>>> v = Validator()
>>> v.allow_unknown
False
>>> schema = {
... 'name': {'type': 'string'},
... 'a_dict': {
... 'type': 'dict',
... 'allow_unknown': True, # this overrides the behaviour for
... 'schema': { # the validation of this definition
... 'address': {'type': 'string'}
... }
... }
... }
>>> v.validate({'name': 'john', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
True
>>> # this fails as allow_unknown is still False for the parent document.
>>> v.validate({'name': 'john', 'an_unknown_field': 'is not allowed', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
False
>>> v.errors
{'an_unknown_field': 'unknown field'}
Changed in version 0.9: allow_unknown
can also be set for nested dict fields.
Changed in version 0.8: allow_unknown
can also be set to a validation schema.
Normalization Rules¶
Renaming Of Fields¶
You can define a field to be renamed before any further processing.
>>> v = Validator({'foo': {'rename': 'bar'}})
>>> v.normalized({'foo': 0})
{'bar': 0}
To let a callable rename a field or arbitrary fields, you can define a handler for renaming:
>>> v = Validator({}, allow_unknown={'rename_handler': int})
>>> v.normalized({'0': 'foo'})
{0: 'foo'}
Purging Unknown Fields¶
After renaming, unknown fields will be purged if the purge_unknown
-property of
a Validator
-instance is True
.
You can set the property per keyword-argument upon initialization or as rule for
subdocuments like allow_unknown
. The default is False
.
>>> v = Validator({'foo': {'type': 'string'}}, purge_unknown=True)
>>> v.normalized({'bar': 'foo'})
{}
Value Coercion¶
Coercion allows you to apply a callable to a value before the document is validated. The return value of the callable replaces the new value in the document. This can be used to convert values or sanitize data before it is validated.
>>> v.schema = {'amount': {'type': 'integer'}}
>>> v.validate({'amount': '1'})
False
>>> v.schema = {'amount': {'type': 'integer', 'coerce': int}}
>>> v.validate({'amount': '1'})
True
>>> v.document
{'amount': 1}
>>> to_bool = lambda v: v.lower() in ['true', '1']
>>> v.schema = {'flag': {'type': 'boolean', 'coerce': to_bool}}
>>> v.validate({'flag': 'true'})
True
>>> v.document
{'flag': True}
New in version 0.9.
Fetching Processed Documents¶
Beside the document
-property a Validator
-instance has shorthand methods to
process a document and fetch its processed result.
validated Method¶
There’s a wrapper-method validated
that returns the validated document. If the
document didn’t validate None
is returned. It can be useful for flows like this:
v = Validator(schema)
valid_documents = [x for x in [v.validated(y) for y in documents] if x is not None]
If a coercion callable raises a TypeError
or ValueError
then the
exception will be caught and the validation with fail. All other exception
pass through.
New in version 0.9.
normalized Method¶
Similary, the normalized
-method returns a normalized copy of a document without validating it:
>>> schema = {'amount': {'coerce': int}}
>>> document = {'model': 'consumerism', 'amount': '1'}
>>> normalized_document = v.normalized(document, schema)
>>> type(normalized_document['amount'])
<type 'int'>
New in version 0.10.
Schema Definition Formats¶
Cerberus schemas are built with vanilla Python types: dict
, list
, string
, etc. Even user-defined
validation rules are invoked in the schema by name, as a string. A useful side effect of this design is
that schemas can be defined in a number of ways, for example with PyYAML.
>>> import yaml
>>> schema_text = '''
... name:
... type: string
... age:
... type: integer
... min: 10
... '''
>>> schema = yaml.load(schema_text)
>>> document = {'name': 'Little Joe', 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10'}
You don’t have to use YAML of course, you can use your favorate serializer. JSON for example. As long as
there is a decoder thant can produce a nested dict
, you can use it to define a schema.